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Outline

Analysis of high-dimensional time-series data (or dependent big
data)

I Problem and some examples

I New challenges

I Parsimony vs sparsity

I Traditional methods may fail

I Some useful methods

I Concluding remark

Goal: Discuss directions for further research
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High dimension: an example
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Figure: Time plots of monthly unemployment rates of the 50 States in
the U.S. from January 1976 to September 2015. The data are seasonally
adjusted.
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Daily log returns of components of S&P 100 index
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Figure: Time plots of 92 daily log return series: 2004-2013
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3rd example: daily stock returns for two years
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Figure: Densities of daily log returns of U.S. stocks in 2012 and 2013.
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A fourth example: demands of electricity
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Figure: Empirical densities of electricity demand, 30 minute intervals,
from July 6, 1997 to March 31, 2007. Adelaide, Australia

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



Why are these series of interest?

Many reasons, including

1. Predicting state unemployment rates is important to local
governments

2. Asset allocation and risk management require multivariate
volatility

3. Finding relationships, both spatial and temporal, is of interest

4. Searching for common features among the data, and many
more

Global economies and business are more integrated, more
complicated, more competitive than before
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What are available?

Statistical methods in the literature:

1. Focus on sparsity

2. Various penalized auto-regressions, e.g. Lasso and its
extensions

3. Various dimension reduction methods, e.g. factor models,
index models, clustering.

Some useful concepts in analyzing big data:

1. Parsimony vs sparsity: Sparsity⇒ Parsimony

2. Simplicity vs reality: trade-off btw feasibility & sophistication
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Parsimony, but not sparsity

A simple example

Z t = β

 1

km

m∑
j=1

k∑
i=1

zi ,t−j

+ at

A highly restricted VAR(m) model.
This model has only one coefficient so it is parsimonious, but it is
not sparse because Z t depends on all elements of past m lagged
values.
In some applications,

∑k
i=1 zi ,t−j is a close approximation to the

first principal component, and long lag-average denotes
momentum effect (or local trend).

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



Lasso may fail for dependent data

1. Data generating model: scalar Gaussian autoregressive,
AR(3), model

xt = 1.9xt−1 − 0.8xt−2 − 0.1xt−3 + at , at ∼ N(0, 1).

Generate 2000 observations. See Figure 5.

2. Big data setup
I Dependent xt : t = 11, . . . , 2000
I Regressors: Xt = [xt−1, xt−2, . . . , xt−10, ε1t , . . . , ε10,t ], where
εit are iid N(0, 1).

I Dimension = 20, sample size 1990.

3. Run the Lasso regression via the lars package of R. See Figure
2 for results. Lag 3, xt−3 was not selected.
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Figure: Time plot of simulated AR(3) time series with 2000 observations
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Figure: Results of Lasso regression for the AR(3) series
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OLS works if we entertain AR models

Run the linear regression using the first three variables of Xt .

I Fitted model

xt = 1.902xt−1 − 0.807xt−2 − 0.095xt−3 + εt , σε = 1.01.

I All estimates are statistically significant with p-value less than
2.22× 10−5.

I The residuals are well behaved, e.g. Q(10) = 12.23 with
p-value 0.20 (after adjusting the df).
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Why?

Two possibilities:

1. Scaling effect: Lasso standardizes each variable in Xt . For
unit-root non-stationary time series, standardization might
wash out the dependence of the stationary part

2. Multicollinearity: Unit-root time series have strong serial
correlations. [ACF approach 1 for all lags.]

This artificial example highlights the difference between
independent and dependent data.

Need to develop methods for high-dimensional time series!
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Possible solutions

1. Re-parameterization using time series properties

2. Use different penalties for different parameters

The first approach is easier.
For the particular time series, we can define ∆xt = (1− B)xt and
∆2xt = (1− B)2xt . Then,

xt = 1.9xt−1 − 0.8xt−2 − 0.1xt−3 + at

= xt−1 + ∆xt−1 − 0.1∆2xt−1 + at

= double + single + stationary + at .

The coefficients of xt−1,∆xt−1,∆
2xt−1 are 1, 1, an −0.1,

respectively.
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Different frameworks for LASSO

The X -matrix of conventional LASSO consists of

(xt−1, xt−2, . . . , xt−10, z1t , . . . , z10,t),

where zit are iid N(0, 1).
Under the re-parameterization, the X -matrix becomes

(xt−1,∆xt−1,∆
2xt−1, . . . ,∆

2xt−8, z1t , . . . , z10,t).

These two X -matrices provide theoretically the same information.
However, the first one has high multicollinearity, but the 2nd one
does not, especially after standardization.
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Figure: Comparison of β-estimates of lars results

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



Theoretical justification

Focus on the particular series xt used. Some properties of the
series are

1. T−4
∑T

t=1 x
2
t ⇒

∫ 1
0 W̄ 2, where W̄ =

∫ 1
0 W (s)ds with W (s)

the standard Brownian motion.

2. T−5/2
∑T

t=1 xt ⇒
∫ 1
0 W̄

3. T−3
∑T

t=1 xt∆xt ⇒
∫ 1
0 W̄W

4. T−2
∑T

t=1(∆xt)
2 ⇒

∫ 1
0 W 2

Standardization may wash out the ∆xt−1 and ∆2xt−1 parts.

Remark: This example suggests an approach for handling
co-integration in high-dimensional time series analysis.
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New Challenges: canonical correlation analysis

Illustration of canonical correlation analysis. See Bao, Hu, Pan and
Zhou (2014).
Framework: dim(X ) = p, dim(Y ) = q. E (X ) = 0, Cov(X ) = I p.
E (Y ) = 0 and Cov(Y ) = I q. Assume p < q.
Let ri = ρ2i , where ρi is the ith population canonical correlation
coefficient (in decreasing order). Let λi be the ith eigenvalue of
the usual sample matrix

S
−1
xx SxyS

−1
yy Syx

Let FT (x) = 1
p

∑p
i=1 1{λi≤x} be the empirical spectral density.
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Assumptions: high-dimensional case

1. p/T → c1, q/T → c2, p/q 9 1 as T →∞ and
c1 + c2 ∈ (0, 1).

2. Rank(Σxy ) = k . Further, let k0 be the nonnegative integer
satisfying

r0 = 1 ≥ · · · ≥ rk0 > rc ≥ rk0+1 ≥ · · · ≥ rk > rk+1 = 0,

where

rc =
c1c2 +

√
c1c2(1− c1)(1− c2)

(1− c1)(1− c2) +
√
c1c2(1− c1)(1− c2)

.
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The Null Case with k = 0

X and Y are independent and the Assumption 1 holds.
Result 1: Almost surely FT (x) converges weakly to F (x) with
density

ρ(x) =
1

2πc1

√
(dr − x)(x − d`)

x(1− x)
1{d`≤x≤dr}, with

dr = c1 + c2 − 2c1c2 + 2
√
c1c2(1− c1)(1− c2)

d` = c1 + c2 − 2c1c2 − 2
√
c1c2(1− c1)(1− c2).

Result 2: The sample eigenvalues satisfy

λi → dr , a.s.

for any fixed integer i . In fact, we have

Prob(λ1 ≤ dr + η) ≥ 1− T−h

for any positive number h and any small positive constant η.
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Important implication

To have zero canonical correlations under the null, we need c1 and
c2 approach zero as T →∞. Dimensions cannot grow at the same
rate as the sample size.

An example: T = 3000, p = 30, q = 300 so that c1 = 0.01 and
c2 = 0.1. In this case, rc = 0.0335, dr = 0.1677 and d` = 0.0483.

Expect all 30 sample eigenvalues to be between 0.0483 and 0.1677.
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Figure: Sample squared canonical correlations under the Null of
independent variables with dimensions 30 and 300. Sample size is 3000.
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Dependent case, i.e. k > 0

Assumptions 1 and 2 hold.
Result 3: For 1 ≤ i ≤ k0, we have

λi →a.s. γi = ri (1− c1 +
c1
ri

)(1− c2 +
c2
ri

).

For each fixed i ≥ k0 + 1, we have

λi →a.s. dr .
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An example

c1 = 0.1, c2 = 0.2, T = 5000,
(r1, . . . , r5) = (0.8, 0.7, 0.6, 0.16, 0.15) so that k = 5.
In this case, rc = 0.167 and (d`, dr ) = (0.02, 0.5).
Since rc = 0.167, we can only expect the first three sample
eigenvalues to approach (γ1, γ2, γ3) ≈ (0.861, 0.793, 0.725) and
others to approach 0.5.

Indeed, we have ρi as 0.858, 0.798, 0.724, 0.494, 0.492, 0.485,
0.482, ..., 0.0199.
The other eigenvalues are approximately between (0.02, 0.5).

Important implication: It is not possible to recover the non-zero
eigenvalues 0.16 and 0.15.
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Figure: Sample squared canonical correlations for two dependent variables
with dimension 500 and 1000. Sample size is 5000. The true eigenvalues
are 0.8, 0.7, 0.6, 0.16, 0.15, and zero.
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Some statistical methods

1. Classification and cluster analysis
I K means
I Tree-based classification
I Model-based classification

2. Factor models, including volatility modeling
I Prediction with many predictors
I Prediction using mixed-frequency data
I Approximate factor models

3. Generalizations of Lasso methods
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Classification

A possible approach: Use a two-step procedure

1. Transform dependent big data into functions, e.g. probability
densities

2. Apply classification methods to functional data

The density functions of daily log returns of U.S. stocks serve as
an example.
We can then classify the density functions to make statistical
inference
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Illustration of classification

Cluster Analysis of density functions

Consider the time series of density functions {ft(x)}.
For simplicity, assume the densities are evaluated at equally-spaced
grid point {x1 < x2 < . . . < xN} ∈ D with increment ∆x . The
data we have become {ft(xi )|t = 1, . . . ,T ; i = 1, . . . ,N}.

Using Hellinger distance (HD), we consider two methods:

I K means

I Tree-based classification
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Hellinger distance of two density functions

Let f (x) and g(x) be two density functions on the common
domain D ⊂ R. Assume both density functions are absolutely
continuous w.r.t. the Lebesgue measure. The Hellinger distance
(HD) between f (x) and g(x) is defined as

H(f , g)2 =
1

2

∫
D

(√
f (x)−

√
g(x)

)2
dx = 1−

∫
D

√
f (x)g(x)dx

Basic properties:

1. H(f , g) ≥ 0

2. H(f , g) = 0 if and only if f (x) = g(x) almost surely.
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K-means method

For a given K , the K-means method seeks partitions of the
densities, say, C1, . . . ,CK , such that

1.
⋃K

k=1 Ck = {ft(x)}
2. Ci

⋂
Cj = ∅ for i 6= j

3. Sum of within-cluster variation V =
∑K

k=1 V (Ck) is
minimized, where the within-cluster variation is

V (Ck) =
∑

t1,t2∈Ck

H(ft1 , ft2)2

It turns out this can easily be done by applying the K-means
method with squared Euclidean distance to the squared-root
densities {

√
ft(x)}.
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Example of K-means

Consider the 48 density functions of half-hour demand of electricity
on Monday in Adelaide, Australia.
With K = 4 clusters, we have

k Elements (time index) Calendar Hours

1 17 to 44 8:00 AM to 10:00 PM
2 15, 16, 45 to 48, 1, 2, 3 7:00 − 8:00 AM; 10:00 PM − 1:30 AM
3 4, 5, 13, 14 1:30 − 2:30 AM; 6:00 − 7:00 AM
4 6 to 12 2:30 − 6:00 AM

Result: capture daily activities, namely, (1) active period, (2)
transition period, (3) light sleeping period, and (4) sound sleeping
period.
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Figure: Density functions of half-hour electricity demand on Monday at
Adelaide, Australia. The sample period is from July 6, 1997 to March 31,
2007.
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Figure: Results of K-means Cluster Analysis Based on Squared Hellinger
Distance for Electricity Demands on Monday. Different colors denote
different clusters.

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



Tree-based classification

Let Z t = (z1t , . . . , zpt)
′ denote p covariates. We use an iterative

procedure to build a binary tree, starting with the root
C0 = {ft(x)}.

1. For each covariate zit , let zi (j) be the jth order statistic
1.1 Divide C0 into two sub-clusters

Ci,j,1 = {ft(x)|zit ≤ zi(j)}; Ci,j,2 = {ft(x)|zit > zi(j)}

1.2 Compute the sum of within-cluster variations

H(i , j) = V (Ci,j,1) + V (Ci,j,2)

1.3 Find the smallest j , say vi , such that H(i , vi ) = minj{H(i , j)}.
2. Select i ∈ {1, . . . , p}, say I , such that

H(I , vI ) = mini{H(i , vi )}.
3. Use covariate zIt with threshold vI to grow two new leaves, i.e.

C1,1 = CI ,vI ,1, C1,2 = CI ,vI ,2
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Tree-based procedure continued

Next, consider C1,1 and C1,2 as the root of a branch and apply the
same procedure with their associated covariates to find candidate
for growth.
The only modification is as follows: When considering C1,1, we
treat C1,2 as a leaf in computing the sum of within-cluster
variations. Similarly, when considering C1,2 for further division, we
treat C1,1 as a leaf in computing the sum of within-cluster
variations.
This growth-procedure is iterated until the number of clusters K is
reached.
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Example of tree-based classification

Consider the density functions of U.S. daily log stock returns in
2012 and 2013.
Using the first-differenced VIX index as the explanatory variable
and K = 4, we obtain 4 clusters as follows:

(−∞,−0.73], (−0.73, 0.39], (0.39, 1, 19], (1.19,∞).

The cluster sizes are 104, 259, 86, and 53, respectively.
Note that positive zt signifies an increase in market volatility
(uncertainty).
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What drove the U.S. financial market?

The Fear Factor
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Figure: Time plots of the market fear factor (VIX index) and its change
series: 2012-2013
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Figure: Results of Tree-based Cluster Analysis for the Daily Densities of
Log Returns of the U.S. Stocks in 2012 and 2013. The first-differenced
series of the VIX index is used as the explanatory variable. The numbers
of element for the clusters are 53, 86, 259, and 104, respectively. The
cluster classification is given in the heading of each plot.
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Model-based classification

Work directly on observed multiple time series

1. Postulate a general univariate model for all time series, e.g.
an AR(p) model

2. Time series in a cluster follow the same model: Pooling data
to estimate common parameters

3. Time series in different clusters follow different models

4. May be estimated by Markov chain Monte Carlo methods

5. May employ scaled-mixture of normal innovations to handle
outliers

Have been widely studied, e.g. Wang et al (2013) and
Fruehwirth-Schnatter (2011), among others.
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Application

1. Apply to monthly unemployment rates of 50 states of the U.S.

2. Use out-of-sample predictions to compare with other methods,
including lasso.

3. For 1-step to 5-step ahead predictions, the model-based
method works well in comparison. Wang et al (2013, JoF).
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RMSE×104 MAE×104

Method m = 1 m = 2 m = 3 m = 4 m = 1 m = 2 m = 3 m = 4
UAR 1616 1492 1791 2073 879 994 1268 1386
VAR 2676 2095 2129 2759 1349 1353 1506 1624

Lasso25 1798 1833 2063 2504 1245 1250 1332 1401
Lasso15 1714 1798 1855 2028 1186 1228 1296 1399
G-Lasso 1877 1865 1882 1905 1291 1290 1306 1327

LVAR 1550 1716 1806 1904 1065 1298 1210 1355
Pls10 1239 1531 1679 1873 909 1028 1263 1226
Pls30 1395 1651 1835 1890 933 1092 1281 1320
Pls50 1685 1871 2006 1967 940 1158 1304 1377
Pls70 1914 2040 2182 1953 996 1222 1362 1432

Pls100 2187 2279 2313 2123 1099 1342 1480 1552
Pcr10 1276 1829 2077 2108 890 1073 1247 1415
Pcr30 1577 1837 2049 1769 888 1093 1261 1321
Pcr50 1546 1805 2017 1759 880 1035 1209 1260
Pcr70 1594 1837 2049 1769 886 1042 1221 1283

Pcr100 1649 2117 2202 2163 1068 1243 1324 1421
MBC 1607 1703 1809 1961 885 1035 1225 1361
rMBC 1225 1481 1691 1839 873 1027 1193 1295

Table: Root mean squared errors (RMSE) and mean absolute error
(MAE) of 1-step to 4-step ahead out-of-sample forecasts for various
models applied to 50 state unemployment rates. The forecasting period
is from January 2006 to September 2011. In the table, m denotes the
forecasting horizon. The models used are univariate AR(4) model (UAR),
traditional VAR(4) model (VAR), VAR(4) with LASSO and s = 0.25 of
L1 norm (Lasso25), VAR(4) with LASSO and s = 0.15 of L1 norm
(Lasso15), group LASSO (G-Lasso), large Vector Autoregression of Song
and Bickel (LVAR), partial least squares with the first k components
(Plsk, k = 10, 30, 50, 70, 100), principal component regression with the
first k components (Pcrk , k = 10, 30, 50, 70, 100), model-based
clustering (MBC), and robust model-based clustering (rMBC).
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Factor models and beyond

1. Generalizations of PC regression, PLS, etc.
Diffusion index of Stock and Watson (2002, JASA)

2. Functional PCA, Ramsay and Silverman (2005) and Yao,
M’́uller and Wang (2005).

3. Factor models for multivariate volatility

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



Functional PCA: Singular value decomposition

1. A tool to study the time evolution of the return distributions

2. Data set: In this particular instance, each density function is
evaluated at 512 points and we have

Y = [Yit = ft(xi )|i = 1, . . . ,N; t = 1, . . . ,T ]512×502

3. Perform singular value decomposition

Ỹ = (N − 1)UDV ′

where Ỹ denotes column-mean adjusted data matrix, U is an
N × N unitary matrix, D is an N × T rectangular diagonal
matrix, and V is a T × T unitary matrix.

4. This is a simple form of functional PCA. [Large samples,
smoothing of PC is not needed.]
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Figure: Scree plot of PCA for daily return densities in 2012 and 2013.
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The first 6 PC functions

−0.2 −0.1 0.0 0.1 0.2

0
40

0
80

0

lnreturn

pc
1

−0.2 −0.1 0.0 0.1 0.2

−1
50

0
15

0

lnreturn

pc
2

−0.2 −0.1 0.0 0.1 0.2

−1
00

0

lnreturn

pc
3

−0.2 −0.1 0.0 0.1 0.2

−6
0

0
40

lnreturn

pc
4

−0.2 −0.1 0.0 0.1 0.2

−3
0

0
20

lnreturn

pc
5

−0.2 −0.1 0.0 0.1 0.2

−2
0

0
20

lnreturn

pc
6

Figure: The first 6 PC functions for daily log return densities in 2012 and
2013.
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Meaning of PC functions? 1st
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Figure: Mean density ± 1st PC: Peak and tails: mean+ standardized 1st
PC (red).
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Approximate factor models

ft(x) =

p∑
i=1

λt,igi (x) + εt(x),

where gi (x) denotes the ith common factor and εt(x) is the noise
function.

1. A generalization of the orthogonal factor model, but allows
the error functions to be correlated.

2. Only asymptotically identified under some regularity
conditions.

3. FPCA provides a way to estimate approximate factor models.
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Loadings of the first PC function
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Figure: Scatter plot of loadings vs changes in VIX index. Red line
denotes lowess fit
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Functional PC via Thresholding

1. Zero appears to be a reasonable and natural threshold

2. Regime 1: dvix ≥ 0 with 244 days. [Volatile (bad) state]

3. Regime 2: dvix < 0 with 258 days. [Calm (good) state]

4. Perform PCA of density functions for each regime.

5. The differences are clearly seen.

6. Leads to different approximate factor models for the density
functions
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Scree plots
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Figure: Scree plots of PCA for each regime
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The first 6 PC functions
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Figure: The first 6 PC functions for daily log return densities for each
regime: red line is for the Calm state, Regime 2
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Approximate factor models

1. Use approximate factor models with the first 12 principal
component functions

2. Compare overall fits with/without thresholding

3. For Regime 1 (positive dvix): randomly select day 17

4. For Regime 2 (negative dvix): randomly select day 420.

5. Check: (a) observed vs fits and (b) residuals of with/without
thresholding

6. With 12 components, both approaches fair well, but
thresholding provides improvements.
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Comparison: day 17 (in Regime 1)
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Figure: Top plot: observed (black), all (red), Thr (blue). Bottom plot: all
(black), Thr (red)
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Comparison: day 420 (in Regime 2)
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Figure: Top plot: observed (black), all (red), Thr (blue). Bottom plot: all
(black), Thr (red)

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



Factor volatility models and implications

Some references

1. Conditionally uncorrelated components. Fan, Wang and Yao
(2008)

2. Dynamic orthogonal components. Matteson and Tsay (2011).
Use orthogonal transformation (parametrized by products of
Given matrices) to obtain transformations that minimize the
cross correlations of squared series.

3. Go-GARCH models. Van der Weide (2002)
Perform transformation by PCA or the concept of independent
component analysis.
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Volatility co-movements

Volatility is driven by news, especially bad news. For assets with
similar risk factors, price movements should be similar (APT).
If volatilities of assets have co-movements, then we can find
portfolios that mitigate the fluctuations in volatility.
One way to search for such portfolios is to consider Principal
Volatility Component (PVC) analysis. See Hu and Tsay (2014,
JBES)
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PVC analysis

Basic idea
Assume E (r t |Ft−1) = 0. Volatility is a function of the squared and
cross-products of past asset returns, i.e.

vec(Σt) = c0 +
∞∑
i=1

Civec(r t−i r
′
t−i ).

Define the lag-` generalized kurtosis matrix of r t as

γ` =
k∑

i=1

k∑
j=1

Cov2(r tr
′
t , xij ,t−`) =

k∑
i=1

k∑
j=1

γ`,ijγ
′
`,ij

where xij ,t−` is a function of ri ,t−`rj ,t−` for 1 ≤ i , j ≤ k and

γ`,ij = Cov(r tr
′
t , xij ,t−`) = E [(r tr

′
t −Σ)(xij ,t−` − E (xij ,t−`))]
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Discussion

1. The idea of generalized covariance matrix between a matrix
variable and scalar variable is not new. It has been used in
statistical literature before, e.g. Li (1992).

2. γ`,ij is symmetric

3. We use square to ensure γ` is non-negative definite.

4. γ` = 0 if r tr
′
t is not correlated with any element of r t−`r

′
t−`.

5. Let z t = M
′
r t where M is a k × k constant matrix, then

Cov(z tz
′
t , x) = Cov(M ′r tr

′
tM , x) = M

′Cov(r tr
′
t , x)M .
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Cumulative generalized kurtosis matrix

For a given positive integer m, define

Γm =
m∑
`=1

γ`.

Useful properties

1. Γm is symmetric and non-negative definite

2. If yt = u ′r t (a linear combination of r t) that has no ARCH
effect, then E (y2t |Ft−1) is a constant. Consequently,
u ′γ`,ij = 0, implying γ`,ij is singular, so is Γm.

3. On the other hand, if Γmu = 0 with u ≤ 0, then γ`u = 0 for
1 ≤ ` ≤ m. From u ′γ`u = 0, it follows that u ′γ`,ijγ

′
`,iju = 0

for all i , j . Consequently, γ`,iju = 0, implying that yt = u ′r t
is not correlated with ri ,t−`rj ,t−`.
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Properties continued

In particular, if m =∞, then yt = u ′r t satisfies that E (y2t |Ft−1) is
not correlated with ri ,t−`yj ,t−` for all i , j and `. This implies yt has
no ARCH effects.

PVC analysis: Perform eigenvalue-eigenvector analysis of a sample
estimate of Γm. In particular, exam the number of zero eigenvalues
and their associate eigenvectors.
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An application

Consider monthly returns of Fama-French 25 portfolios from July
1963 to May 2015. Denoted by z t . Data from French’s web.
Also, use Fama-French 3 factors as explanatory variables. Denoted
by Ft .
Employ the adjusted portfolio returns r t (residuals)

z t = βF t + r t

The r t series has no serial correlations, but show strong ARCH
effects (as expected).
Applying the PVC analysis to r t , we found three eigenvalues close
to zero. The associated eigenvectors give rise to three portfolios
that have no ARCH effects.
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Figure: Time plots of the first 3 and last 3 transformed series of PVC
analysis applied to Fama-French 25 portfolios. Monthly return from
1963.7 to 2015.5.
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Figure: ACF of squared series of the first 3 and last 3 transformed series
of PVC analysis applied to Fama-French 25 portfolios: monthly returns
from 1963.7 to 2015.5.
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Lesson learned: Are we happy?

1. The example demonstrates that PVC works well.
I It detects 3 linear combinations that have constant conditional

variances
I There exist common factors in the volatility of r t .

2. Recall the factor model

z t = βF t + r t ,

where the dimensions of z t and F t are 25 and 3, respectively.
What is the dimension of r t?

Many researchers in factor models assume r t has the same
dimension as z t . Is it really?
Artificial dimension: In the example, dimension of r t should be 22,
not 25. What PVC analysis found is simply to confirm that
dim(F t) = 3. There is nothing to be happy about!
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Lasso and beyond

1. Need to exploit parsimony, beyond sparsity

2. Need to take into account prior knowledge. We have
accumulated lot of knowledge in diverse scientific areas. How
to take advantages of this knowledge?

3. Variable selection is not sufficient. More importantly, what are
the proper measurements to take? What questions can a
given big data answer?
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An illustration

Every country has many interest series

1. have different maturities

2. serve different financial purposes

3. What is the information embedded in those interest rate
series?

Consider U.S. weekly constant maturity interest rates

1. From January 8, 1982 to October 30, 2015

2. Maturities: 3m, 6m, 1y, 2y, 3y, 5y, 7y, 10y, and 30y∗
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1/8/1982 to 10/30/2015.
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Figure: Screeplot of U.S. weekly interest rates.

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



1985 1990 1995 2000 2005 2010 2015

−1
0

0
10

20
30

Figure: Time plots of the first four principal components of U.S. weekly
interest rates

Ruey S. Tsay Booth School of Business University of Chicago High-Dimensional Time Series Analysis



Implication?

In lasso-type of analysis,

1. should we use the interest rate series directly? Even with
group lasso.
This leads to sparsity.

2. should we apply PCA first, then use the PCs?
This leads to parsimony.

3. should we develop other possibilities?
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Concluding Remarks

1. There are many open and interesting questions for
high-dimensional time series analysis

2. Computation? Extracting information? Presentation?

3. Relation to reduced rank regression? Random projection.

4. Simultaneous analysis of continuous and discrete-value time
series

5. Spatio-temporal series beyond separable models
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